Fashion, Tech, Innovation: Using Avatars to Design Video Garment Imagery

Armed with our initial vision of a base garment that could essentially play videos or images on its surface, we’ve looked at some of the challenges that need to be addressed before this could become reality.

Last time we looked at how a video playback garment might be actually work. Now let’s wrap this up by talking a little about how designers would go about actually designing images and video that would play on the garment’s surface.

As we mentioned before, the human body is a solid 3-D object that we are trying to wrap a planar (flat) sheet around.  This is no different from our fashion classes, where we are given a few yards of muslin and told to drape a mannequin (flat, almost 2-D textile sheet, 3D mannequin object).  In moving from designing physical fashion to designing flat images to play on the video garment, we are doing much the same thing, except we are doing all of our draping on the image, not with the cloth.  This requires a slight change in how we go about draping, since what we will actually be draping on is the base video garment, and what we will be draping with are 2-d images.

And this is where the avatar comes in, since the process of draping a digital image onto a solid body requires a mannequin, in this case, an avatar.  At its simplest level, an avatar is nothing more than a digital representation of a human body.  We already know how to go about putting clothing onto human bodies, or at least we should have learned that at design school.

Taking our knowledge about draping onto the human body a step further, we simply need to substitute our expertise with Adobe’s Photoshop and Illustrator rather than pins, needles and scissors to drape the avatar not with textile, but with imagery.

Of course, like any new skill, it takes time and experience to get video garment images right, but a really nice aspect of designing for video garments is that the designer can create as many styles as she wishes, and she can ‘show off’ her design concepts using something like Black Dress Technology’s Virtual Runway™ service.  Unlike draping with textiles, draping pixels on an avatar mannequin does not require the production of costly physical samples.  You just design, upload it, watch the new style move on Virtual Runway, and then when the concept is approved, upload the design onto the base garment for approval.

Once the design is approved, it can be made available for licensing on any of a number of web sites or even via mobile apps! Think about it – you can really share your fashion sense with your besties simply by sending them a link.  Some designers may decide to open source their ‘basic’ video garment images and encourage their followers to customize their own designs.

Of course, it will be an interesting question whether or not the maker of such a video garment will try to use a proprietary file format instead of standard ones like jpg or png files.  Also, will the video garment be an open format, or closed format like the Kindle e-book reader? Amazon would no doubt love to get in the fashion game (everyone seems to want to be there, these days), and it would be entirely possible for them to come up with some version of a proprietary video garment, where they could sell the garment imagery just like they do e-books.

We would anticipate that the early video garments wouldn’t have the data or battery capacity to actually play video, but as the base technology improved and progressed, it would not be out of the question at all to eventually truly have video garments that play moving images over the surface. Imagine the possibilities: a formal gown that plays back images of moving sunlight and shadow dapple over a forest floor, or waves crashing eternally downward to froth and foam (virtually) at the wearer’s feet.   Think of the fun accessories designers could have developing product to complement such designs! Perhaps small scent pomanders contained in earrings or brooches, or tiny sound transistors with short loops of water waves or bird sound for a completely immersive experience, allowing the wearer to carry their own little environment with them.

The possibilities are endless.  All we need is for the materials sciences folks and the technology folks to catch up and give us the technology to do this.  Then we fashionable folk can take it from there.

Something Completely Visionary: Fashion, Tech, Innovation: UVW & XYZ

Armed with our initial vision of a base garment that could essentially play videos or images on its surface, let’s explore some of the challenges that need to be addressed before this could become reality.

Last time we looked at possible power sources for such a garment, including bettery textiles and other possible sources of power.  This time, let’s look at how a video playback garment might be actually work.

The human body is a 3-dimensional object, where we occupy a certain volume of space.  The space we occupy is defined by Cartesian coordinates, X, Y, and Z.  Cartesian coordinates begin at a ‘center point’, the precise placement of which is usually predetermined as a standard.  For most body scanners, the X, Y, and Z axes are oriented so the scanned figure stands on the XY plane (the floor), and the Z axis extends vertically from the feet to the top of the head, so that X = the width of the body from side to side, Y = depth, from front to back, and Z = height from the ground to the top of the head.

This is the sort of stuff that can make your brain explode but it’s also important, because in developing a video garment, the designer will need to be able to create a flat, 2-dimensional image (texture) which can be mapped to the X, Y, Z coordinates of the human body.

That flat, 2-dimensional image is also called a U, V, W map, where U maps to X coordinates, V maps to Y coordinates, and W maps to Z coordinates.  A designer needs to understand the ‘high points’ of the human body (e.g., the point of bust, shoulder, hip, and so on) so that as she develops a flat image to play on the video surface, she can begin adjusting the image in such a way to make sure the image wraps itself onto the video garment correctly, which will then, we hope wrap itself around the human body in such a way that it is both attractive, and yes, flattering.

And this is where the fun of it all comes in because at this point, the designer can begin to really play with her art.  Years of couture experience have taught us how to fool the eye with seam and trim placement; a good couturiere can make her client look 20 pounds lighter, and certainly feel like a princess. Imagine then, if you will, a couture designer being able to simply and easily create digital images that play on the video garments that allow their wearer to have access to the skills of the couturiere and to have their ‘off the rack’ digital designs easily adapted for their unique bodies.

Nest time, we delve in further to the importance of the avatar in developing for a video garment.

Something Completely Visionary: Fashion, Tech, Innovation, Part 7

Armed with our initial vision of a base garment that could essentially play videos or images on its surface, let’s explore some of the challenges that need to be addressed before this could become reality.

Last time we looked at some of the considerations for circuitry for such a garment, e.g., the links for power and for the actual data.  This time, let’s look at how a video playback garment might be powered.

Perhaps the largest challenge for any sort of wearable computing is providing the device with enough juice to make it work.  Short of plugging it into the wall, how would a garment such as we propose be powered? We would have to say that at this point in the development of portable power supply, there is no good or easy solution. What we have seen coming up, may eventually provide enough power to enable such a garment, but at the moment, the technology is not yet well enough developed to make a video playback garment functional.

The most obvious portable power source is a battery of some sort, but as any owner of a cell phone or lap top will tell you, the battery is disproportionately heavy in comparison to its size.  Plugging in enough batteries to power a full garment would require a backpack worth of today’s batteries, and that’s just not very stylish.

There are some interesting developments in creating battery textiles that generate power through the interaction of the body within the textile – some generate power as a result of the static (electricity) that develops from the body’s friction against the garment while others generate power from the body’s movements manipulating and folding the garment to generate power.  (Static electricity develops when two unlike materials rub against one another.)

These textiles are very interesting, since it would seem that you could have a base textile that not only had the ability to play back imagery, but it could also generate its own power supply.

Other things we have thought about for possible power supplies is converting the power of the garment wearer’s foot strike into an energy source.  A woman wearing a high heel carries her full weight concentrated onto a tiny surface area.  When walking, that force is concentrated by her momentum and other physical forces.  It would be entirely possible to convert her entire high heel into a small power manufactory, but that power would need to be moved from the shoe heel to her garment.  Perhaps seamed hosiery would become popular, as you could run an electrical line up the back of the hosiery in the seam, and connect the garment to the hosiery with a small conductive snap.

And what a great project for the physicists, electronic engineers, and material scientists out there to work on!

The issue of power supply is a big hurdle to get past, but luckily with the increased use of mobile devices, there’s increased focus in developing lighter weight, longer life-span battery supplies.  Eventually this question will be answered in a way that enables wearable computing, or even wearable information storage devices, to become more fashionably useful.

Next time: how to get it there, and why we should care about avatars in the wearable computing mix!